
AD-A284 030

Parallel Isosurface Generator
for Huge Datasets

Kathy A. Burke

ARL-CR-171 August 1994

D TICprepared by

ELECT E Computer Sciences Corporation
SEP 0 8 1994 3160 Fairview Park Drive

FFalls Church, VA 22042

under contract

DAAL03-89-C-0038

94-290 44

Dz6 L)T7 T '-, . , _?,L T-JSPU ,D 3

API'ROVED O•R PUDUC REXAM IXS trnON IS MUMS).

94 90G 143

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

REPOT DCUMNTATON AGEForm Approved
REPO T D CUME TATON P GE0MB No 0704-0188

pjo, C eo,,itn(burden -or this~ collem~on of 'torwatio" -% nst a'e .elaor , C' De, lworie n-atng the UnIe to, teve-ri; imstructio~n searcri m tc n d ata sources
gaet-ne,- anc - rta-n"; Ithe data needed and co-oletno nc 'e. Se ~~a n d~.oct~~etst ln tr', oq3e* ev:`ate 0':n ^* the, &we'l of this,

co lg .get nlt,,een;t, ote ~ asi- n:o
0

-ea~oaa.-e% .Se,.'ces. Drec!o'vate o'i no,onatiorOoeraton, and ~eocri 1215jeeftseon
DaHo S.,.~ te *2C4 Allr ,tor 222P443C2 ar'd tC;t". ' 0-1,, -jýqq- and S get Piper..cr.Red tC P-Ce1- C7C4.0'88) Vsashtnqto. DC 20SO3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I August 1994 I Final, Jan-Dec 93
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A Parallel Nsosrface Genento for Huge DatasetS C: DAAL03-89-C-0038

6. AUTHOR(S)

Kathy A. Burke

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army High Performance Computing Computer Sciences Corporation REPORT NUMBER

ReseaCh Center 3160 Fairview Park Drive
University of Minnesota Falls Church. VA 22042
1100 Washington Avenue, South
Minixneapolis, MN 55415 ______________

9. SPONSORING ' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

US. Army Research Labouracy
ATTN: AMSRL-OP-AP-L ARL-CR-171
Aberdeen Proving Ground, MD 21005-5W6

11. SUPPLEMENTARYw i s between the University of Minnest and the U.S. Glovernment, subcontacted to Comnpuie
Sciences Corporaion. Author is employed by Computer Sciences Corporation. Contracting Officer's Representative for
this report is Dr. Walter B. Sturek, U.S. Army Research Laboratory. ATMN AMSRL-CI-CA, Aberdeen Proving Ground,
MD 21005-067. _____________

12a. DISTRI1BUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Ma3ximum 200 words)

A parallel C implementation of the marching cubes method is discussed. The input data for ahe code consists of a
variation of the unformatted PLOT3D grid and solution files. Mwe PLOT3D files can define an irregularly or regularly
spaced mesh and the associated scalars given by v(x~yz), F(xvyz), and S,, = F(x~y~z), respectively. The output is a
collection of three-sided polygons defining a constant value of F(x~yz). and a second scalar which will be mapped onto
this surface. The output is given in the Bop (Bag-O-Polygons) file formaL

DT IC qUALIT 1,,

14. SUBJECT TERMS IS. NUMBER OF PAGES

nurcwS cubes algorithm. parallel, sproc, fork. pthread. isosurface- parallel software, 22PRC CD

parallel C software, graphics, BopyView, Bop format, SciAn, X-windows, OL, polygons 1.PIECD

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNcLASSIFE UNCLASSITID UNCLASSiFE UL
NSN 7540-01-280-SSOO Standard Form 298 (Rev. 2-89)

PWecne by ANSI Std fl9.I
2W10O2

INTENTONALLY LEFT BLANK.

ACKNOWLEDGMENTS

This work was performed under the Army High Performance Computing Research Center (AHPCRC)

Contract DAAL03-89-C-0038 with the University of Minnesota. The author would like to thank

Mr. Jerry Clarke (AHPCRC/ Computer Sciences Corporation [CSC]) for his patient efforts and assistance,

and Mrs. Deborah Thompson for her expert knowledge of Picsure in making Figures 4-6.

"Acceýion For

NTIS CRA&I
DT1C TAB D
U h n now' ,•d --J

Justificdton

B y
Distribution I

Availabiiity Codes

Avai ;ar;d i or

Dist Special

, i

iii,°

INTUMTONALLY LEFF BLANK.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .. iii

LIST OF FIGURES .. vii

1. INTRODUCTION ... 1

2. MARCHING CUBES METHOD 1

3. PARALLEL IMPLEMENTATION 3

3.1 Input Data Requirement ... 3
3.2 Distribution of W orkload .. 4
3.2.1 Fork ... 5
3.2.2 Sproc ... 5
3.2.3 Pthreads ... 5
3.3 Data Output Format ... 6
3.3.1 Bop Form at .. 6
3.3.2 Bop _View .. 6

4. RESULTS ... 7

5. CONCLUSIONS .. 7

6. REFERENCES .. 11

APPENDIX A: UNFORMATTED PLOT3D VARIATION OF THE GRID AND
SOLUTION FILES 13

APPENDIX B: PARALLEL ISOSURFACE GENERATOR SHELL SCRIPT 19

DISTRIBUTION LIST ... 23

V

INTENTIONAL.LY 11FF BLANK.

LIST OF FIGURES

Figure Page

I. Structured grid .. 2

2. Cube indexing .. 2

3. The 15 case configuration .. 3

4. Time vs. number of processors plot for SUN4 8

5. Time vs. number of processors plot for SGI 8

6. Time vs. number of processori plot for KSR I............................ 9

vii

INTENmioNALLY LEFr BLANK.

viii

1. INTRODUCTION

The birth of supercomputers ,ond massively parallel processing machines affords researchers and

scientists the computer power w simulate real world-class problems defined by huge grids. As a result

of this, huge amounts of output data are generated; thereby creating a need for post-processing software

capable of handling and evaluating such huge data sets.

This report will describe a parallel method of computing isosurfaces of a trivariate function, F(x,yz),

described by a variation of the unformatted PLOT3D file format. This output consists of three-sided

polygons defining a surface where F(x,y,z) is some constant value. The format for the output file will be

a generic polygonal format called Bag-O-Polygons (Bop). The purpose of a parallel version of the

marching cubes method is to allow processing of huge data sets which cannot be read totally into a

machine's memory. This marching cubes implementation is capable of computing isosurfaces of any size

grid, whether it be regularly or irregularly spaced. This implementation relies on slicing the grid in the

k direction, and therefore, would require the regular or irregular grid to be oriented in such a manner to

accommodate this method. The C routines referenced in this report are capable of executing on the

Silicon Graphics, Inc. workstations, Sun workstations, and the Kendall Square Research I machine. The

multiple platform parallel execution is made possible through the use of sproc, fork, and pthreads. Timing

results from the three platforms will be given in section 4 of this report

2. MARCHING CUBES METHOD

Marching cubes is a high-resolution, three-dimensional (3D) surface construction algorithm written

by Lorenson and Cline (1987). The marching cubes method is the means by which one defines a 3D

surface of a constant value, S = F(x,yz), from some volume of data represented by a structured grid

(Figure 1). The term marching comes from the notion that one marches through the volume of data a

cube at a time. A cube being a six-sided polygon defined by eight nodes and two adjacent planes in each

direction of i, j, and k.

The algorithm marches through each cube determining whether the intended surface intersects any

edges of the cube. The intersections are determined by placing a zero or a one at each of the eight nodes.

A one is assigned to a cube's node (vertex) if the data, S, at that node is greater than or equal to the user-

specified value. Otherwise, a zero is placed at the node if S falls below the user-specified value. Using

I

Figure 1. Structure grid.

this combination of zeros and ones, ui 8-bit number is constructed. The 8-bit number is an index into

a table containing 28 possible combinations of topologies for a surface defined within a given cube

(Figure 2). Although there are 256 possible cases defining surface intersections with the cube edges;

through symmetry operations and complementary cases, the problem can be reduced to 15 major cases.

Figure 3 shows the 15 major cases which consist of 0-4 triangles per cube.

S vs~a 7 v7~

S vs

-, / .. i1.V2
L,,,ao - LIv Iv7 IvS Iv5 I,,4 Iv3 Iv'2Iv

Figure 2. Cube indexing.

2

Figure 3. 15 case configuration.

After retrieving the triangulation for a specific cube from the table, linear interpolation is used to

determine where the vertices of the triangle(s) will intersect with the edges of the cube. Thus, forming

a list of three-sided polygons defining the connectivity of the isosurface.

3. PARALLEL IMPLEMENTATION

The parallel implementation of the marching cubes algorithm, written in C, rims on Silicon Graphics,

Ine. (SG1) Workstations under IRIX,* on Sun Workstations under SunOS,** and on the KSR1 (Kendall
Square Research 1) under KSR OS,*** which are all UNfX*-compatible.

3.1 Inreut Data Reruiremengl The parallel marching cubes code requires a variation of the C

unformatted PLOT3D grid and solution files. More specifically, the parallel isosurface generator requests

the input data in two separate PLOT3D multiple grid, 3D whole, xyz, and Q (without Jacobian) file

formats.

'I mad IRIX at uWadmats of Silicon Grapics. inc.
A. ad SumOS are ninkmiks of Sun MicroMtems.

SJRI md KSR OS me adanarks of Kendanf Squae Resarch Corpoaim.
"" UNIX is a tademark of BeD Labotories.

3

Although the multiple grid format is used, the code expects the number of grids to equal one. Also,

the Q file, otherwise referred to as the "solution file," is not limited to five specific scalar and vector

components, as specified in the PLOT3D User's Manual (1989). The user will need at least one scalar

defined in the solution file to complete a successful execution. In the case of one scalar, the user can

define an isosurface of a constant value of that scalar, S, and map the identical scalar onto the surface for

color mapping purposes. In instances when there are more than one scalar in the solution file the user

has the flexibility to pick and choose any scalars for defining the isosurfaces and the isosurface mapping.

See Appendix A for the description of the C syntax for writing this variation of the unformatted PLOT3D

grid and solution files.

Additional input is required from the command line. The command line arguments will specify the

PLOT3D grid, Plot3D solution, and Bop filenames for argvyl] through argv[3], respectively. The user

should also supply the numeric index into the Q.file indicating which scalars, Sire and Sn, will define

the isosurface and isosurface mapping, argv[41 and argv[51; a floating-point isosurface value, argv[6]; an

integer value specifying the number of planes to step in the k direction, argv[7]; and finally, an integer

value indicating the number of processes to spread the problem across, argv[8]. See Appendix B for an

example shell script for executing this parallel isosurface generator using the above command line

arguments.

3.2 Distribution of Workload. The parallel implementation consists of multiple routines; some

routines are controlled by the parent process, while others are implemented by the children. The parent

process controls the initial opening of the files to retrieve header information from both the grid and

solution files. Once the number of grids (one) and dimensions in i, j, and k are read in, the parent calls

the routine to partition the processing of the isosurface using the slice strategy. This partitioning routine

creates a C structure containing the information each child requires in order to determine which part of

the grid it will read and process. Having formed the partitioning structure, the parent produces children

totaling the number specified by the command line argument, argv[8]. The parent creates new processes

using fork or sproc on the SGI workstations, fork on the Sun workstations, and pthreads on the KSRI

machine. These new processes (children) are responsible for calculating polygons defining the isosurface,

and writing the corresponding data to the Bop file. Due to the nature of the marching cubes problem,

each child process may or may not be required to perform output operations. Therefore, children with

small or no output will complete execution before those children with larger output requirements.

4

3.2.1 Fork. Fork is a standard UNIX call for creating a new process. This new process, known as

the "child process", is an exact copy of the calling process (parent process). During a normal fork, the

writable portions of the process's address space are marked copy-on-write. Hence, if any process writes

onto a given page, a copy of that page is created and given to that process. Writes by one process am

not visible to the other existing processes including the parent process (calling process). Although the

child process is an exact copy of the parent process, the child has a unique process id (pid), a different

parent process ID, and has its own copy of the parent's file descriptors.

3.2.2 Sproc. Sproc is a SGI, IRIX specific routine which creates a new share group process. While

sproc is a variant of the standard UNIX fork call, inherent differences between the two exist. When a

parent or child calls sproc, a new process is created. Instead of the new process being an exact copy of

the parent, as in fork, the child shares the virtual address space (shared memory, mapped riles, and data

space) of the parent process. This is, of course, assuming that one has selected the sharing option. In the

case of sproc, the parent and child each have their own stack pointer and program counter, but all the data

and text space is visible by both processes. After a successful sproc, the parent and child process will

have unique pids, but are in the same shared process group.

The first time sproc is called, a share group or shared process group is formed. All subsequent calls

to sproc, whether it be by the parent or child, will add another process to the share group. As mentioned

above, all members of the share group, share virtual address space, as well as possible sharing of file

tables, effective userids, current working directories, and other options which may be specified by the inh

flag of sproc.

3.2.3 Pthreads. The KSR pthread is a high-level interface to the IEEE POSIX thread library (IEEE

1990). KSR C pthread (POSIX threads) functions are called to create and synchronize processes. Pthread

objects are made up of pthreads themselves, mutexes, condition variables, and barriers. Variables

accessible to one pthread are available to all other pthreads in that process. Multiple threaded processes

operate in a single, shared address space. Due to the sharing of address space, creating pthreads incurs

considerably less overhead than creating a new process. In general, multi-threaded processes share most

of their data, but often use private variables for thread operations.

Pthreads use the qualifiers, -private and -shared, to specify whether a declared variable will be

pthread-private or shared. In declaring a variable pthread-private, each pthread has a private copy of that

5

variable. All variables not declared private are shared; therefore, the qualifier -shared is never required.

Default private variables, such as automatic and register variables cannot be declared shared.

3.3 Data Output Format. Although there are many output formats which can be defined for a large

variation of commercial graphics packages, this parallel isosurface generator outputs the Bop format. The

Bop format can be easily written and networked with the use of the Bop libraries. These libraries have

been linked with the parallel isosurface code to allow the polygonal data to be written to disk files or

networked across heterogeneous architectures using BopYiew (Clarke 1993).

Since this parallel isosurface generator utilizes the slice strategy for implementing parallelism, some,

if not all of the child processes could very well arrive at the function responsible for writing polygons in

the Bop format, simultaneously. To prevent such collisions, semaphores have been employed to allow

only one child to write or network polygons in the Bop format at a time.

Upon completion of the isosurface generation, the Bop format in conjunction with BopView saves

images from the viewport in a number of file formats. These files can later be used to create 3D video

animations or color hardcopies. Refer to the Bop and BopYiew documentation (Clarke 1993) for a

complete description and examples for using this file format and application.

3.3.1 Bop Format. The Bop format is a binary, polygonal format. This format contains the

information necessary for BopYiew to visualize the list of polygons defining the isosurface. Each

polygon is defined by a C structure, bpoly, whose members include: an integer specifying the number

of vertices and the floating-point values for x, y, z, and the mapping scalar for each vertex of the polygon.

The libbopa library contains the functions required for opening, writing to, and closing Bop files.

It is also important to note that the Florida State University and the Supercomputer Research Institute's

public domain scientific visualization and animation package, SciAn, has a Bop file reader.

3.3.2 Bop View. This is an X-window, Motif application program for visualizing polygonal data.

BopView's X-window viewport is capable of rendering polygons to an X-window, with the option of

rendering these polygons in the SOI Graphics Language (GL). Once the polygons have been rendered

in the viewport, the user can use combinations of x, y, z translations, rotations, and scaling to orient the

isosurface to a desirable location and size. The user has the choice of writing the polygons in SOI's rgb

6

(red green blue), BRLCAD's pix, or PostScript's file format. The libbopmrsa library contains the

functions required for opening and sending polygonal information via a TCP/IP connection to a Bop_View

process locally or remotely.

4. RESULTS

The parallel implementation of the marching cubes algorithm has been used to generate isosuf, ,s

of computational data from the CTH and HULL codes, as well as medical resonance data. All thm

output formats were converted to a variation of the PLOT3D grid and solution file formats, as mentioned

earlier.

Prior to the development of this parallel isosurface generator, a 3D volume of computational data of

-2.2 M floating-point grid values and -11 M floating-point scalar values required a wallclock time of

-20 min per time-step to read the entire grid and associated scalars into memory, calculate the desired

isosurface of --60 thousand polygons, write the polygons to an X-window, and dump the viewport of the

X-window into an image file. Using the same dataset while processing the isosurface with the parallel

isosurface generator, writing polygons via MRS to BopView, and generating an image file takes -90 s.

Figures 4-6 represent timing results of isosurface generation using the parallel implementation on the

SUN4m sparc, SGI Challenge, and KSRI machines. Timings are based on an eight processor maximum

for the SGI and the KSRI, and two processors for the SUN4 sparc. All timings include total execution

time, which includes the time for input and output Therefore, timing differences between the KSRI and

the SGI and SUN4m platforms are considerably different due to input/output contingencies on the KSR1.

The timing results are given to simply show different test cases and are not being used as an evaluation

of any of the specific architectures.

5. CONCLUSIONS

Huge datasets, whether they be on the order of millions or billions of points, can be post processed

with this parallel isosurface generator, given that at least two slices (marching in the k-direction) can fit

into a machine's physical memory. This piecewise calculation has been tested on SUN4, SGI, and KSRI

machines, yielding results not possible using other commercial and public domain packages which assume

that one's volume of data will fit entirely into a machine's memory.

7

&U4 forkO

14

NVMber of o"osaee

Figure 4. Time vs. number of processors plot for SUN4.

, ----.- $@1: epm.O

..................................... k

Number ofl Promo..

Figure 5. Time vs. number of processors plot for SGI

Linking this parallel isosurface generator with a given computation code can yield a machine-

independent means for creating interactive graphics. The combination of the piecewise isosurface

computation and the X-window display via TCP/IP using Bop_View, makes for a flexible environment for

producing interactive visualization. This capability is a useful tool for analyzing and debugging 3D

volumetric data.

8

KGII: pthroeadO

so.
s o

Number ot Proeoeoo

Figure 6. Time vs. number of processors plot for KSRI.

INTENTIONALLY LEFr BLANK.

10

6. REFERENCES

Clarke, J. "Distributed Heterogeneous Visualization. Bop andB op-View." U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, to be pubiished.

Lorensen, W. E., and H. E. Cline. "Marching Cubes: A High Resolution 3D Surfoce Construction
Algorithm." SIGGRAPH 87 Conference Proceedings, Computer Graphics, vol. 21, no. 4,
pp. 163-169, July 1987.

NASA Ames Research Center. PLOT3D User's Manual. Moffett Field, CA, 1989.

Institute of Electrical and Electronics Engineers. Threads Extension for Portable Operating Systems.
(P1003.4a), p. 10, 1989.

11

INTENTIoNAL.LY LEFr BLANK.

12

APPENDIX A:

UNFORMATTED PLOT3D VARIATION OF THE GRID AND SOLUTION FILES

13

INTUMWFONALLY LEFr BLANK.

14

A. Unformatted PLOT3D Variation Of The Grid And Solution Files

I' This Function Reads A Generic Data File And Writes Two Files Which Ane
A Variation Of Mwe PLOTD Multiple Grid (3D3 Whole, XYZ) And Q (Without
Jacobian) File Formats. 0/

#include <tdo.h>
void
vajtplot~dchar **argv)

ufl ngrids -0.1
int idim -0,dAm -0, kdim.-O0;
mnt num..veils - 0
mlt i -0.
int proc.Jd - 1;
mlt num-forks - 2;
int fork-num - 0;
int status -0;

it C110df21 - {0, 01;

float x -0.0, y -0.0, z -O0.0
float w -0.0, xha-O0.0, rho -0.0,.pres -0.0;
float *vx - NULL, *vy - NULL, *vz - NULL;
float *vw - NULL, *vtha - NULL, *vabo - NULL, *vprs - NULL,-
float scalar[4J-{(0,0, 0, 01,

FILE *input - NULL, *gid - NULL, *soI - NULL,

/* Open Input And Output Files Given From The Command Line. '

input - fopen(argv[l],'r");
grid - fopen(argv[2],"w");
aol - fopen(ugv[3],"1w");

P* Grab Dimension In The 1, J, and K Direction From the Command Line.1

idimn - atoi(argv(41);
idimn - atoi(argv(5J);
kdim - atoi(argvf6D);

ngrids - 1;
numi~verts - idim * jdimn * kdinrn

P Allocate M~emory For Grid And Solution Variables. Nf

if(x- (flag *)calloc(num~vens~sizeof(float))) - NULL)(
fprintf(sedecr,"Unable To Calloc vxc.\i")-
perror("Calloc :1~;
exit(-I);
I

if((vy - (float *)cafloc(num...versls~iz~of(floal))) - NULL){
fpfintf(stdesz"Unable To Calloc vyM'n);
perror(O"Calloc :"Y,
exit(-l)

if((vz - (float *)cailoc(num..veslssizeof(float))) - NULL)(
frpnnt(stden'Unable To Cafloc vz)Mi);

15

penal("Caloc :"Y'
exi*-l);

if((vw - (float *)c&Uoc(num..yerts,&azeof(fioa1))) - NULL)(
f~prindt(sidefr,'Unable To Calloc vw.\a);
pmnwtufloc :1.);
exil(l);

if((vsha - (float *)cfO~c(num~veiusjdeof(float))) - NULL)(
fprintf(stdeff,'linable To Cailoc vsha~ji',
penuf("Calloc:)
ex~it(- 1);

if((vrho - (float *)caIloc(numvru.etsjadzeof~float))) - NULL){
fprintf(stderr,"Unable To Calloc vrho.\n")
perrw("CaLloc :4');
exit(- 1);

if((vpes - (float *)ao~nmvM -o~fot) NULL)(
fprintf(stderr,"Unable To Calloc vpzua.'a);
perror('Calloc :)
exit(- 1);

1* Read Data From A Generic Data File.

fOr(i-0icnum~yesli++){
fiscanf(input.'"M Vf %f", &x, &y, &z);
fiscanf(input,'%f %V, &w, &rha);
fiscanf(input,"%f %fr', &rho, &pres);

vyliJ - .
vzlij - Z

vwFij W;
vd~ai1 ftra,
vrtioril -rho;

vpresfi] pres;

/* Fork Two Processes, One Will Be Used To Create Mae Grid And The Other For
Mwe Solution. */

for(i-Q. knumj~orks; i++)(
fork-num - i

if(pzuc..id!-O){
proc-id - forkO;

elm(

if(proc-id-l)
pesro("forkj);
fprbdt(atderr,"1ERROR - CAN4 NOT FORK PROCESS.Wn);

16

}* a~nd if Procjs - -1
else if(poc-jd 0)

iIfforknpum. 0-
fwrite(&ngrids.sizeof(int),1,grid);
fwriwe&idimsizeof(int),l,gri);
fwrit.(&jdimvsizeof(int).,1,rid);
fwrite(&ki szofit)lgrid);

fde(Vl,sizef(floaO).num..verts~gid);
fwrievyjvf(float),num..versgid4);
fwrite(vz~sezof(fla).numt..verts~grd);
chidforkjium] - getpidO;
printf("childf%d) - %d, process corn hedNc".fork.,numnchild~fork-numD);
) I' end if fork-numn - 0 *

if~fork-.num - f
fwrite(&ngrids,sizeof(int),1,sol);
fwrite(&idkim.sizeof(int),1;sol);
fwrite(&*sjdmszeof~nt),1,sol);
fwrite(&kdimjsizef(int),1,sol);
fwrite(scalar,sizeof(floIA),4,sol);
fwrite(vw,sizeof(floal),numyverts,sol);
fwfitevdsizeof~float).nurn..verts~sol);

fwie(vrho,sizeof(floai),num..verts,sol);
fwrite(vpres,sizeof(float),nuni...vertsao1);
child[fork...num] - getpidO;
printf("cbild[%d] - %d, process completedT'n",fo&..nurncbild[fork...numJ);
) 1* end if fork-.num. - 1I

} i enrd if procjd - 0V
}/* end for j */

I* Have Parnt Process Wait Until The Children Have Completed.

for(i-O~knurvjorks;i-.-e){
wait(&ztalus);

if(procijd !-0){
exit(num~forks);

17

INTENTIONALLY 12FF BLANK.

APPENDIX B:

PARRALLEL ISOSURFACE GENERATOR SHELL SCRIPT

19

INTENTIONALLY LEF" BLANK.

20

B. Parraflel Isosurface Generator Sheli Script

#1 /bia/cm -f

Thiis shell ucrpt execuses PBIG with the followinS perameten
* Grid File Name: /umrimpWKburkedhlMd1 pd
Solution File Name: AaurtmpIKburkeihdfD2wo
BOP File Name: /uw/tmpOKburkeiop1
ScLnun~iso..dta - 2
* ScLnunuaso..mp - 1
Isovalie, - 5.0
Kstep - 3
Num..prmc - $I

Note: User shoulduset Kstep equal to 2or 3

if($l - ")then
echo "Usap: $0 Num-.procs"
exit (I)
else
set DDIRI.4uszitrp~buzke
aet GRID-hdfO2
set SOL-hdlD
endif

rm -r $DDIRl/bopl

echo Exaecuting /ufzitnpKburke/PBIGH

/OUsdtMp urke"PIG SDDJRIISGRID-pid SDDIRL/$SOLsol SDDIRlbopI 2 1 5.0 3 $1

21

INTENTIONALLY LEFT BLANK.

22

No. of No. of
COies Onfanization Cotnes Organization

2 Administrator 1 Commander
Defe s Technical Info Center U.S. Army Missile Command
ATT DTIC-DDA ATTN: AMSMI-RD-CS-R (DOC)
Camra, n Station Redstone Arsenal, AL 35898-5010
Alexandria, VA 22304-6145

1 Commander
Commander U.S. Army Tank-Automotive Command
U.S. Army Materiel Command ATTN: AMSTA-JSK (Armor Eng. Br.)
ATTN: AMCAM Warren, MI 48397-5000
5001 Eisenhower Ave.
Alexandria, VA 22333-0001 Director

U.S. Army TRADOC Analysis Command
Director ATTN: ATRC-WSR
U.S. Army Research Laboratory White Sands Missile Range, NM 88002-5502
ATIN: AMSRL-OP-CI-AD,

Tech Publishing (n-- oRY) 1 Commandant
2800 Powder Mill Rd. U.S. Army Infantry School
Adelphi, MD 20783-1145 ATTN: ATSH-CD (Security Mgr.)

Fort Benning, GA 31905-5660
Director
U.S. Army Research Laboratory (cuam only)1 Commandant
ATTN: AMSRL-OP-CI-AD, U.S. Army Infantry School

Records Management ATITN: ATSH-WCB-O
2800 Powder Mill Rd. Fort Benning, GA 31905-5000
Adelphi, MD 20783-1145

2 Commander Aberdeen Proving Ground
U.S. Army Armament Research,

Development, and Engineering Center 2 Dir, USAMSAA
ATTN: SMCAR-TDC ATTN: AMXSY-D
Picatinny Arsenal, NJ 07806-5000 AMXSY-MP. H. Cohen

Director I Cdr, USATECOM
Benet Weapons Laboratory ATTN: AMSTE-TC
U.S. Army Armament Research,

Development, and Engineering Center I Dir, USAERDEC
ATFN: SMCAR-CCB-TL ATTN: SCBRD-RT
Watervliet, NY 12189-4050

1 Cdr, USACBDCOM
Director ATTN: AMSCB-CII
U.S. Army Advanced Systems Research

and Analysis Office (ATCOM) I Dir, USARL
ATTN: AMSAT-R-NR, M/S 219-1 ATTN: AMSRL-SL-I
Ames Research Center
Moffeu Field, CA 94035-1000 5 Dir, USARL

ATTN: AMSRL-OP-AP-L

23

No. of

Compur Scieces CoIrlmtion
ATIN: Dr. David Brown
3160 Fairview Park Dr.
Mail Code 265
Falls Church, VA 22042

Aberdeen Proving Ground

I I Dir, USARL
ATN: AMSRL-CI, William Mennagen

AMSRL-CI-A, Harold Breaux
AMSRL-CI-AC,

John Grosh
Phillip Dykstra
Jerry Clarke
Deborah Thompson
Jennifer Hare
Eric Mark
Richard Angelini
Kathy Burke

AMSRL-CI-C, Walter Sturek

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your
comments/answers to the items/questions below will aid us in our efforts.

1. ARLReportNumber ARL-CR-171 DateofReport August 1994

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for

which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of

ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved,

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address
above and the Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and maiL)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY N OTG111111 INECESSARYIF MAILED
OFFICIAL BUSINESS IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 0001, APG, MD

Psage Wi be pad by ad&.um

Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-AP-L
Aberdeen Proving Ground, MD 21005-5066

